自動更新

並べ替え:新着順

メニューを開く

#3次元・極座標のラプラシアン導出 44 ↑P = (x,y,z) をxy平面に #射影 したものが ↑P ' = (x,y) である事を思い出そう. 「↑P ' とx軸のなす角が φ だ」 と決めたのだから, cos φ = x / | ↑P ' | = x / √(x^2+y^2) φをx,yで表せた! または tan φ = y / x ←こっちのがシンプル

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 37 1つ疑問。 ↑P=( x,y,z ) を xy平面上に #射影 し ↑P '=(x,y) を作る時, どうしてあえて 「↑Pとz軸のなす角」を θ とおき z = r cosθ としたのか? かわりに 「↑Pとxy平面のなす角」を θ ' とおき z = r sin θ ' とするのはダメなのか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 35 ↑P=(x,y,z) と その #射影 ↑P '= (x,y) の関係は r sinθ = r ' ① r cosθ = z ② xy平面上で ↑P ' を表わす極座標は r ' cosφ = x ③ r ' sinφ = y ④ ①を③④に代入すれば r sinθ cosφ = x r sinθ sinφ = y これと②で極座標完成!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 34 ↑P=(x,y,z) をxy平面上に #射影(投影)した ↑P ' について… その大きさ r ' は r '=√(x^2+y^2) であり, xy平面上でx軸からの角度を φ(ファイ)とおけば r ' cos φ = x r ' sin φ = y が成り立つ. ↑ これは見慣れた #2次元#極座標

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 33 ベクトル ↑P=(x,y,z) の大きさを | ↑P |=r=√(x^2+y^2+z^2) ↑P がz軸となす角をθとおけば ↑P がxy平面上になす #射影 ↑P ' の大きさは | ↑P ' |=r '=√(x^2+y^2) θの定義より r sinθ=r ' r cosθ=z xy平面上の世界に持ち込めた!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 32 空間内の位置ベクトル ↑P = ( x,y,z ) は #3次元 の量だが… これをxy平面に #射影 した #2次元 のベクトル ↑P ' = ( x,y ) については 見慣れた「2次元の #極座標 変換」が 成立してほしい。 以上の要件を満たす 座標軸の取り方を考えよう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 44 ↑P = (x,y,z) をxy平面に #射影 したものが ↑P ' = (x,y) である事を思い出そう. 「↑P ' とx軸のなす角が φ だ」 と決めたのだから, cos φ = x / | ↑P ' | = x / √(x^2+y^2) φをx,yで表せた! または tan φ = y / x ←こっちのがシンプル

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 37 1つ疑問。 ↑P=( x,y,z ) を xy平面上に #射影 し ↑P '=(x,y) を作る時, どうしてあえて 「↑Pとz軸のなす角」を θ とおき z = r cosθ としたのか? かわりに 「↑Pとxy平面のなす角」を θ ' とおき z = r sin θ ' とするのはダメなのか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 35 ↑P=(x,y,z) と その #射影 ↑P '= (x,y) の関係は r sinθ = r ' ① r cosθ = z ② xy平面上で ↑P ' を表わす極座標は r ' cosφ = x ③ r ' sinφ = y ④ ①を③④に代入すれば r sinθ cosφ = x r sinθ sinφ = y これと②で極座標完成!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 34 ↑P=(x,y,z) をxy平面上に #射影(投影)した ↑P ' について… その大きさ r ' は r '=√(x^2+y^2) であり, xy平面上でx軸からの角度を φ(ファイ)とおけば r ' cos φ = x r ' sin φ = y が成り立つ. ↑ これは見慣れた #2次元#極座標

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 33 ベクトル ↑P=(x,y,z) の大きさを | ↑P |=r=√(x^2+y^2+z^2) ↑P がz軸となす角をθとおけば ↑P がxy平面上になす #射影 ↑P ' の大きさは | ↑P ' |=r '=√(x^2+y^2) θの定義より r sinθ=r ' r cosθ=z xy平面上の世界に持ち込めた!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 32 空間内の位置ベクトル ↑P = ( x,y,z ) は #3次元 の量だが… これをxy平面に #射影 した #2次元 のベクトル ↑P ' = ( x,y ) については 見慣れた「2次元の #極座標 変換」が 成立してほしい。 以上の要件を満たす 座標軸の取り方を考えよう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 44 ↑P = (x,y,z) をxy平面に #射影 したものが ↑P ' = (x,y) である事を思い出そう. 「↑P ' とx軸のなす角が φ だ」 と決めたのだから, cos φ = x / | ↑P ' | = x / √(x^2+y^2) φをx,yで表せた! または tan φ = y / x ←こっちのがシンプル

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 37 1つ疑問。 ↑P=( x,y,z ) を xy平面上に #射影 し ↑P '=(x,y) を作る時, どうしてあえて 「↑Pとz軸のなす角」を θ とおき z = r cosθ としたのか? かわりに 「↑Pとxy平面のなす角」を θ ' とおき z = r sin θ ' とするのはダメなのか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 35 ↑P=(x,y,z) と その #射影 ↑P '= (x,y) の関係は r sinθ = r ' ① r cosθ = z ② xy平面上で ↑P ' を表わす極座標は r ' cosφ = x ③ r ' sinφ = y ④ ①を③④に代入すれば r sinθ cosφ = x r sinθ sinφ = y これと②で極座標完成!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 34 ↑P=(x,y,z) をxy平面上に #射影(投影)した ↑P ' について… その大きさ r ' は r '=√(x^2+y^2) であり, xy平面上でx軸からの角度を φ(ファイ)とおけば r ' cos φ = x r ' sin φ = y が成り立つ. ↑ これは見慣れた #2次元#極座標

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 33 ベクトル ↑P=(x,y,z) の大きさを | ↑P |=r=√(x^2+y^2+z^2) ↑P がz軸となす角をθとおけば ↑P がxy平面上になす #射影 ↑P ' の大きさは | ↑P ' |=r '=√(x^2+y^2) θの定義より r sinθ=r ' r cosθ=z xy平面上の世界に持ち込めた!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 32 空間内の位置ベクトル ↑P = ( x,y,z ) は #3次元 の量だが… これをxy平面に #射影 した #2次元 のベクトル ↑P ' = ( x,y ) については 見慣れた「2次元の #極座標 変換」が 成立してほしい。 以上の要件を満たす 座標軸の取り方を考えよう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 44 ↑P = (x,y,z) をxy平面に #射影 したものが ↑P ' = (x,y) である事を思い出そう. 「↑P ' とx軸のなす角が φ だ」 と決めたのだから, cos φ = x / | ↑P ' | = x / √(x^2+y^2) φをx,yで表せた! または tan φ = y / x ←こっちのがシンプル

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

トレンド13:35更新

  1. 1

    ファッション

    梅田ロフト

    • 営業終了
    • 茶屋町
    • 2025年
    • MBSニュース
    • 競合他社
  2. 2

    エンタメ

    フェリシモ

    • 長谷部くん
  3. 3

    アニメ・ゲーム

    アンジェリーク

    • スーパーファミコン
    • Nintendo Switch Online
    • コズモギャング
    • Switch Online
    • Switch
    • 30周年
    • ビッグラン
  4. 4

    ITビジネス

    日本人学校

    • 刺される
    • 広東省
    • 日本政府関係者
    • 中国広東省
    • 蘇州日本人学校
    • 森屋官房副長官
    • 身柄確保
    • 台湾戦争
    • 深圳市
    • 男子児童
    • 総領事館
    • 動画配信者
    • 政治的意図
    • 傷害事件
    • 日本人ヘイト
  5. 5

    ITビジネス

    フリーダムウォーズ リマスター

    • フリーダムウォーズ
    • レッツ貢献
    • FREEDOM WARS
    • Vita
    • PS4
    • PS5
    • Switch
    • Steam
    • 2014年
    • 発売決定
    • 2025年
    • PS
  6. 6

    エンタメ

    ゼンモンキー

    • 5年間
    • 解散発表
    • コメント全文
  7. 7

    ニュース

    運航会社社長

    • 業務上過失致死
    • 知床観光船事故
    • 知床観光船
    • 知床観光船沈没事故
    • 運航会社
    • 20人死亡
    • 業務上過失
  8. 8

    ニュース

    東京都心

    • 82年ぶり
    • 1942年
    • 帰宅ラッシュ
    • 最高気温
    • 激しい雨
    • 55分
    • 関東地方
    • 熱中症
    • 猛暑日
  9. 9

    エンタメ

    トリプルカイト

    • 宮近海斗
    • 松倉海斗
    • 9月21
  10. 10

    儘ならない彼

    • 美しい彼
    • 儘ならない
    • 130万
    • ファンの皆様に
20位まで見る

人気ポスト

電車遅延(在来線、私鉄、地下鉄)

遅延している路線はありません

全国の運行情報(Yahoo!路線情報)
よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ