自動更新

並べ替え:新着順

メニューを開く

#3次元・極座標のラプラシアン導出 88 (∂/∂x)^2で使う #積の微分 続 ∂_θ (1/sinθ)∂_φ=-(cosθ/sin^2 θ)∂_φ+(1/sinθ)∂_θ ∂_φ ∂_φ cosφ ∂_r=-sinφ ∂_r+cosφ ∂_φ ∂_r ∂_φ cosφ ∂_θ=-sinφ ∂_θ+cosφ ∂_φ ∂_θ ∂_φ sinφ ∂_φ=cosφ ∂_φ+sinφ (∂_φ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 87 (∂/∂x)^2 の計算に必要な #積の微分: ∂_r (1/r) ∂_θ=-(1/r^2) ∂_θ+(1/r) ∂_r ∂_θ ∂_r (1/r) ∂_φ=-(1/r^2) ∂_φ+(1/r) ∂_r ∂_φ ∂_θ sinθ ∂_r=cosθ ∂_r+sinθ ∂_θ ∂_r ∂_θ cosθ ∂_θ=-sinθ ∂_θ+cosθ (∂_θ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 86 #ラプラシアン の計算ミスが頻出である事は 杉浦「解析入門Ⅰ」の 第Ⅱ章「微分法」§6「多変数ベクトル値函数の微分法」p137にも こう注記されている。 引用: 『二階偏導函数の計算では,#積の微分 法によって係数を微分することを忘れてはならない』

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 84 微分対象の関数 f(r,θ,φ) を明記し #積の微分 を使うと… (∂/∂r) { (1/r)・(∂/∂θ) f(r,θ,φ) } = { (∂/∂r)(1/r) }・(∂f/∂θ) + (1/r)・(∂/∂r)(∂f/∂θ)←この項が現れる = (-1/r^2)(∂/∂θ)f + (1/r)(∂/∂r)(∂/∂θ)f これが正しい計算!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 83 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) }・(∂/∂θ) ↑ この計算は誤り. 微分対象の関数 f(r,θ,φ) を 略さず書けば… (∂/∂r) { (1/r) (∂/∂θ) f(r,θ,φ) } つまり (1/r) と (∂/∂θ) f(r,θ,φ) との積を #積の微分 で扱う必要がある.

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 81 ∂/∂x の #極座標 表示を2乗し (∂/∂x)^2 を求める際, 計算をミスりやすいポイント… それは「#積の微分」! ここでよく間違える。 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) } (∂/∂θ) = -(1/r^2) (∂/∂θ) この計算は間違いである!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 80 (∂/∂x)^2 = { (sinθ cosφ)(∂/∂r) +(cosθ cosφ / r)(∂/∂θ) -(sinφ / r sinθ)(∂/∂φ) }^2 ↑ 展開すると3×3=9項。 さらに各項で #積の微分 により 項数が倍に増え18項になる. それが x,y,zの3変数ぶんあるので…, 合計で18×3=54項!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#大学の力学_惑星の運動編 64 ↑r / r を時間微分すると, #積の微分 公式より (d/dt)( ↑r / r ) = ↑ṙ (1/r) + ↑r (d/dt)(1/r) = ↑ṙ (1/r) + ↑r {-ṙ / r^2} = ↑ṙ r (1/r^2) - ṙ ↑r ( 1/ r^2 ) = (1/r^2){ ↑ṙ r - ↑r ṙ } ↑ これをさらにシンプルな形に変形可能か?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 58 ベクトル形式の #運動方程式 を 上手に変形するため, 下記の式の時間微分を考えよう. ↑ṙ × (↑r×↑ṙ) #積の微分 公式より (d/dt) { ↑ṙ × (↑r×↑ṙ ) } = { (d/dt)( ↑ṙ ) } × (↑r×↑ṙ) + ↑ṙ × { (d/dt)(↑r×↑ṙ) } 計算を進めると…?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#3次元・極座標のラプラシアン導出 88 (∂/∂x)^2で使う #積の微分 続 ∂_θ (1/sinθ)∂_φ=-(cosθ/sin^2 θ)∂_φ+(1/sinθ)∂_θ ∂_φ ∂_φ cosφ ∂_r=-sinφ ∂_r+cosφ ∂_φ ∂_r ∂_φ cosφ ∂_θ=-sinφ ∂_θ+cosφ ∂_φ ∂_θ ∂_φ sinφ ∂_φ=cosφ ∂_φ+sinφ (∂_φ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 87 (∂/∂x)^2 の計算に必要な #積の微分: ∂_r (1/r) ∂_θ=-(1/r^2) ∂_θ+(1/r) ∂_r ∂_θ ∂_r (1/r) ∂_φ=-(1/r^2) ∂_φ+(1/r) ∂_r ∂_φ ∂_θ sinθ ∂_r=cosθ ∂_r+sinθ ∂_θ ∂_r ∂_θ cosθ ∂_θ=-sinθ ∂_θ+cosθ (∂_θ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 86 #ラプラシアン の計算ミスが頻出である事は 杉浦「解析入門Ⅰ」の 第Ⅱ章「微分法」§6「多変数ベクトル値函数の微分法」p137にも こう注記されている。 引用: 『二階偏導函数の計算では,#積の微分 法によって係数を微分することを忘れてはならない』

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 84 微分対象の関数 f(r,θ,φ) を明記し #積の微分 を使うと… (∂/∂r) { (1/r)・(∂/∂θ) f(r,θ,φ) } = { (∂/∂r)(1/r) }・(∂f/∂θ) + (1/r)・(∂/∂r)(∂f/∂θ)←この項が現れる = (-1/r^2)(∂/∂θ)f + (1/r)(∂/∂r)(∂/∂θ)f これが正しい計算!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 83 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) }・(∂/∂θ) ↑ この計算は誤り. 微分対象の関数 f(r,θ,φ) を 略さず書けば… (∂/∂r) { (1/r) (∂/∂θ) f(r,θ,φ) } つまり (1/r) と (∂/∂θ) f(r,θ,φ) との積を #積の微分 で扱う必要がある.

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 81 ∂/∂x の #極座標 表示を2乗し (∂/∂x)^2 を求める際, 計算をミスりやすいポイント… それは「#積の微分」! ここでよく間違える。 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) } (∂/∂θ) = -(1/r^2) (∂/∂θ) この計算は間違いである!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 80 (∂/∂x)^2 = { (sinθ cosφ)(∂/∂r) +(cosθ cosφ / r)(∂/∂θ) -(sinφ / r sinθ)(∂/∂φ) }^2 ↑ 展開すると3×3=9項。 さらに各項で #積の微分 により 項数が倍に増え18項になる. それが x,y,zの3変数ぶんあるので…, 合計で18×3=54項!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#大学の力学_惑星の運動編 26 d↑r(t)/dt // ↑p(t) より d↑r(t)/dt × ↑p(t) = ↑0 なので ↑r(t) × d↑p(t)/dt = ( ↑0 ) + ↑r(t) × d↑p(t)/dt = ( d↑r(t)/dt × ↑p(t) ) + ↑r(t) × d↑p(t)/dt = (d/dt)( ↑r(t)×↑p(t) ) が言える。 ※#積の微分 である。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#3次元・極座標のラプラシアン導出 88 (∂/∂x)^2で使う #積の微分 続 ∂_θ (1/sinθ)∂_φ=-(cosθ/sin^2 θ)∂_φ+(1/sinθ)∂_θ ∂_φ ∂_φ cosφ ∂_r=-sinφ ∂_r+cosφ ∂_φ ∂_r ∂_φ cosφ ∂_θ=-sinφ ∂_θ+cosφ ∂_φ ∂_θ ∂_φ sinφ ∂_φ=cosφ ∂_φ+sinφ (∂_φ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 87 (∂/∂x)^2 の計算に必要な #積の微分: ∂_r (1/r) ∂_θ=-(1/r^2) ∂_θ+(1/r) ∂_r ∂_θ ∂_r (1/r) ∂_φ=-(1/r^2) ∂_φ+(1/r) ∂_r ∂_φ ∂_θ sinθ ∂_r=cosθ ∂_r+sinθ ∂_θ ∂_r ∂_θ cosθ ∂_θ=-sinθ ∂_θ+cosθ (∂_θ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 86 #ラプラシアン の計算ミスが頻出である事は 杉浦「解析入門Ⅰ」の 第Ⅱ章「微分法」§6「多変数ベクトル値函数の微分法」p137にも こう注記されている。 引用: 『二階偏導函数の計算では,#積の微分 法によって係数を微分することを忘れてはならない』

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 84 微分対象の関数 f(r,θ,φ) を明記し #積の微分 を使うと… (∂/∂r) { (1/r)・(∂/∂θ) f(r,θ,φ) } = { (∂/∂r)(1/r) }・(∂f/∂θ) + (1/r)・(∂/∂r)(∂f/∂θ)←この項が現れる = (-1/r^2)(∂/∂θ)f + (1/r)(∂/∂r)(∂/∂θ)f これが正しい計算!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 83 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) }・(∂/∂θ) ↑ この計算は誤り. 微分対象の関数 f(r,θ,φ) を 略さず書けば… (∂/∂r) { (1/r) (∂/∂θ) f(r,θ,φ) } つまり (1/r) と (∂/∂θ) f(r,θ,φ) との積を #積の微分 で扱う必要がある.

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 81 ∂/∂x の #極座標 表示を2乗し (∂/∂x)^2 を求める際, 計算をミスりやすいポイント… それは「#積の微分」! ここでよく間違える。 (∂/∂r) { (1/r) (∂/∂θ) } = { (∂/∂r) (1/r) } (∂/∂θ) = -(1/r^2) (∂/∂θ) この計算は間違いである!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 80 (∂/∂x)^2 = { (sinθ cosφ)(∂/∂r) +(cosθ cosφ / r)(∂/∂θ) -(sinφ / r sinθ)(∂/∂φ) }^2 ↑ 展開すると3×3=9項。 さらに各項で #積の微分 により 項数が倍に増え18項になる. それが x,y,zの3変数ぶんあるので…, 合計で18×3=54項!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Hamilton形式編 52 Q. #ポアソン括弧 が満たす #ライプニッツ則(Leibniz rule)とは A. 下記の性質がある. { A, BC } = { A, B } C + B { A, C } { AB, C } = { A, C } B + A { B, C } #ライプニッツ・ルール#積の微分#分配則 などと呼ぶ.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#3次元・極座標のラプラシアン導出 88 (∂/∂x)^2で使う #積の微分 続 ∂_θ (1/sinθ)∂_φ=-(cosθ/sin^2 θ)∂_φ+(1/sinθ)∂_θ ∂_φ ∂_φ cosφ ∂_r=-sinφ ∂_r+cosφ ∂_φ ∂_r ∂_φ cosφ ∂_θ=-sinφ ∂_θ+cosφ ∂_φ ∂_θ ∂_φ sinφ ∂_φ=cosφ ∂_φ+sinφ (∂_φ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 87 (∂/∂x)^2 の計算に必要な #積の微分: ∂_r (1/r) ∂_θ=-(1/r^2) ∂_θ+(1/r) ∂_r ∂_θ ∂_r (1/r) ∂_φ=-(1/r^2) ∂_φ+(1/r) ∂_r ∂_φ ∂_θ sinθ ∂_r=cosθ ∂_r+sinθ ∂_θ ∂_r ∂_θ cosθ ∂_θ=-sinθ ∂_θ+cosθ (∂_θ)^2

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 86 #ラプラシアン の計算ミスが頻出である事は 杉浦「解析入門Ⅰ」の 第Ⅱ章「微分法」§6「多変数ベクトル値函数の微分法」p137にも こう注記されている。 引用: 『二階偏導函数の計算では,#積の微分 法によって係数を微分することを忘れてはならない』

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

トレンド22:37更新

  1. 1

    アムドライバー

    • グランセイザー
    • 新作発表
    • セイザータリアス
    • メガミデバイス
  2. 2

    エンタメ

    ひみつの嵐ちゃん

    • 学校へ行こう!
    • それSnow Manにやらせて下さい
    • 学校へ行こう
    • TBS
    • 櫻井翔
    • 7時
  3. 3

    エンタメ

    ビリーアイリッシュ

    • ビリー・アイリッシュ
    • Billie Eilish
    • イニトラ
    • トラジャ
    • 神回
    • ロラパルーザ
    • ビリー
    • アイリッシュ
  4. 4

    エンタメ

    ミュージックステーション

    • 最高のパフォーマンス
    • MY FIRST STORY
    • LOUD
    • MUSIC STATION
    • INI
    • 出演いたします
  5. 5

    アニメ・ゲーム

    グルーシャ

    • 広橋涼
    • 小林千晃
    • 千晃くん
    • ポケットモンスター
    • ポケマス
  6. 6

    スポーツ

    lovefighters

    • レイエス
  7. 7

    アニメ・ゲーム

    ソル・カマル

    • ソルカマル
    • アイドル
  8. 8

    エンタメ

    whodunit

    • GLAY
    • JAY
    • TAKURO
    • ENHYPEN
    • ENHYPEN JAY
  9. 9

    スポーツ

    満塁ホームラン

    • レイエス
    • フランコ
    • 第2号
    • 満塁ホームラン返し
    • ソロホームラン
    • 北海道日本ハム
    • 第3号
    • 東北楽天
    • ホームラン
    • 日本ハム
  10. 10

    ニュース

    石神のぞみ

    • マグロ漁船
    • 石神のぞみ3D
    • 迫真の演技
    • インフルエンサー
    • にじ
    • 3D
20位まで見る
よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ