自動更新

並べ替え:新着順

ベストポスト
メニューを開く

#3次元・極座標のラプラシアン導出 30 #直交座標 として #右手系 をとり, 親指・人差し指・中指の順に x,y,z軸を並べる。 この時 「x軸からy軸の方向に #右ねじ を回すと, ねじがz軸の方向に進む」。 各方向を向く #単位ベクトル に対し #外積 が ↑e_x × ↑e_y = ↑e_z となる。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 29 2次元平面で (x,y) ⇔ (r,θ) の相互書き換えは これで大丈夫。 つぎは3次元空間だが #極座標 の前に まず #直交座標 の軸の取り方を押さえよう。 3次元でx軸,y軸,z軸の並び方を どう記憶しているか? ↑ これがあやふやだと 極座標も作れない。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 8 ▶(文献3) 杉浦「解析入門Ⅰ」: 第Ⅱ章「微分法」 §6「多変数ベクトル値函数の微分法」 p136~137 2次元平面で #極座標 を定義 ↓ ∂/∂rと∂/∂θを #直交座標#偏微分 で表す方法を導く ↓ ∂/∂x と ∂/∂y を 極座標の偏微分で表す方法を導く

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 78 #直交座標 での #偏微分 ∂/∂x ∂/∂y ∂/∂z の3つをそれぞれ #極座標 パラメータ r,θ,φ だけで表す事ができた。 次は,これらの二乗和をとればよい。 #ラプラシアン ∆ = (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2 の極座標表示まであと少し!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 75 #極座標 から #直交座標 への #座標変換 の係数 #行列: A = { { sinθ cosφ,cosθ cosφ,sinφ }, { sinθ sinφ, cosθ sinφ, cosφ }, { cosθ,  -sinθ,  0  } } #直交行列 で (A^t) A = E ゆえ #逆行列#転置 で求まる. A^(-1) = A^t

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 46 「#極座標 の変数 r,θ,φ を使い #直交座標 の変数 x,y,z を 各々個別に表わす」 ↑ これはもうできた。 次にやりたいのが… ↓ 「極座標の変数 r,θ,φ を使い, 直交座標の変数【による #偏微分】 ∂/∂x,∂/∂y,∂/∂z を 各々個別に表わす」

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 30 #直交座標 として #右手系 をとり, 親指・人差し指・中指の順に x,y,z軸を並べる。 この時 「x軸からy軸の方向に #右ねじ を回すと, ねじがz軸の方向に進む」。 各方向を向く #単位ベクトル に対し #外積 が ↑e_x × ↑e_y = ↑e_z となる。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 29 2次元平面で (x,y) ⇔ (r,θ) の相互書き換えは これで大丈夫。 つぎは3次元空間だが #極座標 の前に まず #直交座標 の軸の取り方を押さえよう。 3次元でx軸,y軸,z軸の並び方を どう記憶しているか? ↑ これがあやふやだと 極座標も作れない。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 8 ▶(文献3) 杉浦「解析入門Ⅰ」: 第Ⅱ章「微分法」 §6「多変数ベクトル値函数の微分法」 p136~137 2次元平面で #極座標 を定義 ↓ ∂/∂rと∂/∂θを #直交座標#偏微分 で表す方法を導く ↓ ∂/∂x と ∂/∂y を 極座標の偏微分で表す方法を導く

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 78 #直交座標 での #偏微分 ∂/∂x ∂/∂y ∂/∂z の3つをそれぞれ #極座標 パラメータ r,θ,φ だけで表す事ができた。 次は,これらの二乗和をとればよい。 #ラプラシアン ∆ = (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2 の極座標表示まであと少し!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 75 #極座標 から #直交座標 への #座標変換 の係数 #行列: A = { { sinθ cosφ,cosθ cosφ,sinφ }, { sinθ sinφ, cosθ sinφ, cosφ }, { cosθ,  -sinθ,  0  } } #直交行列 で (A^t) A = E ゆえ #逆行列#転置 で求まる. A^(-1) = A^t

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 46 「#極座標 の変数 r,θ,φ を使い #直交座標 の変数 x,y,z を 各々個別に表わす」 ↑ これはもうできた。 次にやりたいのが… ↓ 「極座標の変数 r,θ,φ を使い, 直交座標の変数【による #偏微分】 ∂/∂x,∂/∂y,∂/∂z を 各々個別に表わす」

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 30 #直交座標 として #右手系 をとり, 親指・人差し指・中指の順に x,y,z軸を並べる。 この時 「x軸からy軸の方向に #右ねじ を回すと, ねじがz軸の方向に進む」。 各方向を向く #単位ベクトル に対し #外積 が ↑e_x × ↑e_y = ↑e_z となる。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 29 2次元平面で (x,y) ⇔ (r,θ) の相互書き換えは これで大丈夫。 つぎは3次元空間だが #極座標 の前に まず #直交座標 の軸の取り方を押さえよう。 3次元でx軸,y軸,z軸の並び方を どう記憶しているか? ↑ これがあやふやだと 極座標も作れない。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 8 ▶(文献3) 杉浦「解析入門Ⅰ」: 第Ⅱ章「微分法」 §6「多変数ベクトル値函数の微分法」 p136~137 2次元平面で #極座標 を定義 ↓ ∂/∂rと∂/∂θを #直交座標#偏微分 で表す方法を導く ↓ ∂/∂x と ∂/∂y を 極座標の偏微分で表す方法を導く

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#大学の力学_惑星の運動編 103 r, θ 座標系で表記した #惑星#軌道: r(t) = k / ( e cos θ(t) + 1 ) ★ 変数変換 r = √(x^2+y^2) cosθ = x / √(x^2+y^2) によって #極座標 から #直交座標 に直すと, ★は #楕円 の方程式になる。 確かめてみよう!

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#3次元・極座標のラプラシアン導出 78 #直交座標 での #偏微分 ∂/∂x ∂/∂y ∂/∂z の3つをそれぞれ #極座標 パラメータ r,θ,φ だけで表す事ができた。 次は,これらの二乗和をとればよい。 #ラプラシアン ∆ = (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2 の極座標表示まであと少し!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 75 #極座標 から #直交座標 への #座標変換 の係数 #行列: A = { { sinθ cosφ,cosθ cosφ,sinφ }, { sinθ sinφ, cosθ sinφ, cosφ }, { cosθ,  -sinθ,  0  } } #直交行列 で (A^t) A = E ゆえ #逆行列#転置 で求まる. A^(-1) = A^t

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 46 「#極座標 の変数 r,θ,φ を使い #直交座標 の変数 x,y,z を 各々個別に表わす」 ↑ これはもうできた。 次にやりたいのが… ↓ 「極座標の変数 r,θ,φ を使い, 直交座標の変数【による #偏微分】 ∂/∂x,∂/∂y,∂/∂z を 各々個別に表わす」

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 30 #直交座標 として #右手系 をとり, 親指・人差し指・中指の順に x,y,z軸を並べる。 この時 「x軸からy軸の方向に #右ねじ を回すと, ねじがz軸の方向に進む」。 各方向を向く #単位ベクトル に対し #外積 が ↑e_x × ↑e_y = ↑e_z となる。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 29 2次元平面で (x,y) ⇔ (r,θ) の相互書き換えは これで大丈夫。 つぎは3次元空間だが #極座標 の前に まず #直交座標 の軸の取り方を押さえよう。 3次元でx軸,y軸,z軸の並び方を どう記憶しているか? ↑ これがあやふやだと 極座標も作れない。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 8 ▶(文献3) 杉浦「解析入門Ⅰ」: 第Ⅱ章「微分法」 §6「多変数ベクトル値函数の微分法」 p136~137 2次元平面で #極座標 を定義 ↓ ∂/∂rと∂/∂θを #直交座標#偏微分 で表す方法を導く ↓ ∂/∂x と ∂/∂y を 極座標の偏微分で表す方法を導く

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 78 #直交座標 での #偏微分 ∂/∂x ∂/∂y ∂/∂z の3つをそれぞれ #極座標 パラメータ r,θ,φ だけで表す事ができた。 次は,これらの二乗和をとればよい。 #ラプラシアン ∆ = (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2 の極座標表示まであと少し!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#3次元・極座標のラプラシアン導出 75 #極座標 から #直交座標 への #座標変換 の係数 #行列: A = { { sinθ cosφ,cosθ cosφ,sinφ }, { sinθ sinφ, cosθ sinφ, cosφ }, { cosθ,  -sinθ,  0  } } #直交行列 で (A^t) A = E ゆえ #逆行列#転置 で求まる. A^(-1) = A^t

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

トレンド7:04更新

  1. 1

    ニュース

    台風9号

    • ジョンダリ
    • 湿った空気
    • 今日の天気
    • 注意が必要です
    • 9号
  2. 2

    グルメ

    俳句の日

    • 正岡子規
    • ハイキューの日
    • バドミントン
  3. 3

    ニュース

    高市早苗氏

    • 高市早苗
  4. 4

    スポーツ

    40号

    • 39号
    • 2試合連続
    • ドジャース
    • 大谷翔平
    • ホームラン
  5. 5

    スポーツ

    ロドリゴ

    • エンバペ
    • ヴィニ
    • マドリー
    • ベリンガム
    • ヴィニシウス
    • エムバペ
  6. 6

    今週も頑張っていきましょう

  7. 7

    スポーツ

    マジョルカ

    • マドリー
    • ムリキ
    • 浅野拓磨
    • レアル
    • 浅野
    • 引き分け
  8. 8

    スポーツ

    ギュレル

    • エンドリッキ
  9. 9

    ニュース

    連休明けの月曜日

    • 気が重い
  10. 10

    今週も頑張ろう

20位まで見る

人気ポスト

よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ