- すべて
- 画像・動画
自動更新
並べ替え:新着順
メニューを開く
#解析力学_Lagrange形式編 112 ja.wikipedia.org/wiki/%E3%82%AA… 「#オストログラドスキーの定理 は 通常の物理系の #運動方程式 が 2階微分方程式として定式化される理由を 説明する,と解釈される」 #ニュートンの運動方程式 や #オイラー・ラグランジュ方程式 が 2階なのは このためなんですね.
メニューを開く
#解析力学_Lagrange形式編 95 #ラグランジアン が L(h,v)=T-U =(1/2)mv^2-mgh の時 #オイラー・ラグランジュ方程式 は… ∂L/∂h - (d/dt){ [ ∂L/∂v ]_{vにḣを代入} }=0 ① ∂L/∂h=-mg ∂L/∂v=mv より,①は -mg-(d/dt)mḣ=0 ∴ mḧ=-mg #ニュートンの運動方程式.
メニューを開く
#解析力学_Lagrange形式編 77 ①#最小作用の原理 δS=0 ②#オイラー・ラグランジュ方程式 ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ①を "解く" のではなく, ①で代入・変形すると ②という #微分方程式 になる. ②を "解く" のではなく, ②で代入・変形すると #ニュートンの運動方程式 になる.