自動更新

並べ替え:新着順

メニューを開く

定力装置を使った F=ma の実験で、生徒が運動方程式を肌で感じる体験を。準備から考察まで、授業で役立つヒント満載です。 思わず「なるほど!」と声が出る、感動の実験プロセスをぜひご覧ください! buff.ly/AQ7GPvY #理科の授業 #運動方程式 pic.x.com/AA4zI807TW

科学のネタ帳@桑子研@kuwako

メニューを開く

#大学の力学_惑星の運動編 89 #ケプラーの第1法則 の 証明の流れを復習: #運動方程式 を立てる ↓ ↓ 変形 ↓ #ラプラス・ルンゲ・レンツベクトル ↑e(t)={(↑r)'×(↑r×(↑r)')}/GM-↑r/r が (d/dt)↑e=↑0 を満たす #保存量 となる←★今ここ! ↓ ↓ 両辺積分 ↓ #楕円軌道 を導出

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#量子論の参考書> 「場の量子論の拡がり 現代からみた種々相」(サイエンス社2006) p13より引用: 『#古典電磁気学#量子化 するには #電磁場#固有振動#展開 する。 #展開係数 に対する #運動方程式#単振動 のものであり, 結局,電磁場は #調和振動子#集団 となる。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#大学の力学_惑星の運動編 85 ↑r/r という基本的な関数形を 時間微分するだけで, 惑星の #運動方程式 の右辺 つまり #重力 の項の #原始関数 が求まる。 そして,その右辺に合わせて 運動方程式の左辺も 「両辺で変形がそろうように ×(↑r×↑ṙ)しておこう」 という発想が生まれる。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 83 #惑星#運動方程式 ↑r̈=-(GM/r^3)↑r 変形し (d/dt){↑ṙ×(↑r×↑ṙ)-GM(↑r/r)}=↑0 ↓ (d/dt){↑ṙ×(↑r×↑ṙ)/GM-↑r/r}=↑0 { } 内を ↑e=↑ṙ×(↑r×↑ṙ)/GM-↑r/r とおけば (d/dt)↑e=↑0 ↑eは #ラプラス・ルンゲ・レンツベクトル.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 82 #惑星#運動方程式 ↑r̈=-(GM/r^3)↑r 両辺に×(↑r×↑ṙ)し ↑r̈×(↑r×↑ṙ) = -(GM/r^3){↑r×(↑r×↑ṙ)} 変形 (d/dt){↑ṙ×(↑r×↑ṙ)} = GM(d/dt)(↑r/r) 整理 (d/dt){ ↑ṙ×(↑r×↑ṙ)-GM(↑r/r) } = ↑0 #保存量 が現れた!

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 81 ここまでまとめ: #惑星#運動方程式 ↑r̈ = -( GM / r^3 ) ↑r 両辺に ×(↑r×↑ṙ) すると 左辺 = ↑r̈ × (↑r×↑ṙ) = (d/dt){ ↑ṙ × (↑r×↑ṙ ) } 右辺 = -(GM/r^3){ ↑r × (↑r × ↑ṙ) } = GM (d/dt)( ↑r / r ) 両辺を積分できる!

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#量子論の参考書> 「数学から見た量子力学」 (岩波書店2005砂田) p8より: 『(#量子力学的)#運動方程式 √(-1) dψ / dt = Ĥ_ħ ψ は常に #一意的 に解く事ができ その # ψ(t) に対し ψ(t) = T_t ψ_0 とおく時 T_t は #ヒルベルト空間 ℋ の 1径数 #ユニタリ変換群#拡張 される.』

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#大学の力学_惑星の運動編 80 もともと #惑星#運動方程式 の右辺に現れる -(1/r^3) ↑r およびそれを変形した -(1/r^3){ ↑r × (↑r × ↑ṙ) } の #原始関数 を得たいのだった. 前ツイで (d/dt)( ↑r / r ) = -(1/r^3){ ↑r × (↑r × ↑ṙ) } を得たので,原始関数は ↑r / r.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 77 #ベクトル三重積 ↑b (↑a・↑c)-↑c (↑a・↑b) ① = ↑a×(↑b×↑c) #惑星#運動方程式 の右辺 (1/r^2){ ↑ṙ r - ↑r ṙ } = (1/r^3){ ↑ṙ r・r - ↑r ṙ・r } ② ①で ↑b=↑ṙ ↑c=↑r ↑a=↑r とおくと ② = (1/r^3){ ↑r×(↑ṙ×↑r) }

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#素粒子と原子核の参考書> 「Dブレーン」(東大出版2006橋本) p17より引用: 『#現代物理学 を記述する #場の理論 と呼ばれる #数学 の言葉を借りると, #物理学 における #ソリトン とは 「場の理論の #運動方程式# であり しかも #エネルギー#局在化 しているもの」 である.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#大学の力学_惑星の運動編 62 いま調べたいこと: 惑星の #運動方程式 の右辺に現れる -( 1 / r^3 ) ↑r およびそれを変形した -( 1 / r^3 ) ↑r × (↑r×↑ṙ) の #原始関数 を得たい. そのために, この式は「r の分数式」を含むので まずは小手調べで 1/r の時間微分を調べてみよう.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 61 #惑星#運動方程式 m ↑r̈(t) = -( GMm / r^3 ) ↑r の両辺を #積分 して解くにあたり, 左辺の ↑r̈(t) は 「×(↑r×↑ṙ)」をかければ原始関数が分かる。 右辺も同じく 「×(↑r×↑ṙ)」をかければ積分可能になるだろうか? 試してみよう。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 58 ベクトル形式の #運動方程式 を 上手に変形するため, 下記の式の時間微分を考えよう. ↑ṙ × (↑r×↑ṙ) #積の微分 公式より (d/dt) { ↑ṙ × (↑r×↑ṙ ) } = { (d/dt)( ↑ṙ ) } × (↑r×↑ṙ) + ↑ṙ × { (d/dt)(↑r×↑ṙ) } 計算を進めると…?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 57 互いに #平行 な2本の #ベクトル に対し その #外積 は ↑0 である。 ↑a // ↑b ならば ↑a × ↑b = ↑0 さらに,↑b に ↑a を代入し ↑a × ↑a = ↑0 も言える。 ∵ ↑a // ↑a これらの性質を使い, ベクトル形式の #運動方程式 を変形しよう。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 55 上手な式変形をするために, ベクトルの #外積 の性質を調べよう。 #惑星#運動方程式 m ↑r̈(t) = -( GMm / r^3 ) ↑r が成り立つ時, 両辺を比較すると 左辺の ↑r̈ と 右辺の ↑r とは常に #平行 である。 ↑r̈ // ↑r この時 ↑r̈ × ↑r = ↑0

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Lagrange形式編 112 ja.wikipedia.org/wiki/%E3%82%AA…#オストログラドスキーの定理 は 通常の物理系の #運動方程式 が 2階微分方程式として定式化される理由を 説明する,と解釈される」 #ニュートンの運動方程式#オイラー・ラグランジュ方程式 が 2階なのは このためなんですね.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#大学の力学_惑星の運動編 54 #重力 だけが働く場合の #運動方程式 m ↑r̈(t) =( G mM / r^2 )( -↑r/r ) =-( G mM / r^3 ) ↑r ↓ ↑r̈(t)=-( GM / r^3 ) ↑r 両辺に,ある上手いベクトルを #外積 でかけると 上手な式変形ができ 二階微分を一階微分にできる。 そのベクトルとは…?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 53 #運動方程式 m ↑r̈(t) = ↑F(t) の右辺で, #惑星 に働く力は,#重力 ↑F = ( G mM / r^2 )( -↑r / r ) Mは #太陽 の質量 Gは #万有引力定数。 ( -↑r / r ) は, 地球から太陽の方向を向く #単位ベクトル。 つまり重力は ↑r と反対方向の #引力

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 52 #LRLベクトル という #保存量 を知り, 証明の方針が立ったので, ここからは実際に #ケプラーの第1法則 を示してゆこう。 惑星の位置を ↑r(t) 惑星の質量を m 惑星に働く力を ↑F(t) とすると, ベクトル形式の #運動方程式 は… m ↑r̈(t) = ↑F(t)

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学の参考書> 「重点解説 ハミルトン力学系」(2016柴山) 前書きより: 『1章では #ラグランジュ形式#ホロノーム拘束系#運動方程式 の導出. #多様体 上の #ラグランジュ系 の例として #測地線#方程式 を挙げる. 2章以降では ほとんど #ハミルトン形式 で 議論を進める.』

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 49 #ケプラーの第1法則 と保存量の関係: #運動方程式 を立てる. ↓ ↓ 変形 ↓ #ラプラス・ルンゲ・レンツベクトル ↑e(t) = { (↑r)'×( ↑r×(↑r)' ) }/GM-↑r/r が (d/dt)↑e=↑0 を満たす #保存量 となる. ↓ ↓ 両辺を積分 ↓ #楕円軌道 が導出される!

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Lagrange形式編 105 #オストログラドスキーの定理 theorem of Ostrogradsky ja.wikipedia.org/wiki/%E3%82%AA… 力学変数の高階微分を #運動方程式 に含むような系では, #ハミルトニアン が「下に非有界」となり, 物理的に不安定なモードが存在するため そのような系は「物理的ではない」.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#大学の力学_惑星の運動編 41 物理で,#運動方程式 などの #微分方程式 を解くコツは ズバリ「時間不変の #保存量 を見つけること」. 時間不変(時間変化がゼロ)とは (d/dt)(何かの関数)=0 ↑ この「何かの関数」が保存量. 保存量を作れたら微分方程式は「解ける」. なぜそう言える?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#大学の力学_惑星の運動編 40 #極座標 を使わずに #楕円軌道 を導くには… まず太陽から見た 地球の #位置ベクトル を ↑r(t) とし, ↑r が満たす #運動方程式#ベクトル で表記する。 そして,その方程式を #ベクトル解析 の公式によって 「ベクトルのまま」解く。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学の参考書> 「コマの幾何学 ― 可積分系講義」 (共立出版2000Audin) www2.yukawa.kyoto-u.ac.jp/~kanehisa.taka… 著者による訂正表がある. 『あらゆる #可積分系 に 共通の方法である #Lax方程式 の方法を, #古典的#コマ#運動方程式 を材料にして 丁寧にかつ わかりやすく解説している.』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

トレンド12:30更新

  1. 1

    エンタメ

    僕ヤバ

    • 山田杏奈
    • コメント全文
  2. 2

    エンタメ

    スタイルキューブ

    • 今後ともよろしくお願いいたします
    • いただけますと幸いです
    • 感謝申し上げます
    • 2025年
  3. 3

    アトミックモンキー

    • アスレーベン
  4. 4

    スポーツ

    アルヒラル

    • クリバリ
    • アル・ヒラル
    • ハーランド
    • ラインデルス
    • インザーギ
    • マウコム
    • マンC
    • マンチェスターシティ
    • シモーネ
    • ブヌ
    • ベルナルド
    • クラブワールドカップ
    • クラブワールドカップ2025
    • マンチェスター
    • マドリー
  5. 5

    医療詐欺

    • 史上最大
    • 医療専門家
    • 2兆円
    • 146億
    • コロナワクチン
    • 96人
    • ワクチン
    • トランプ
    • 毒ワクチン
  6. 6

    ミッキー&ミニー

    • 東京ディズニーランド
    • ミキミニ
    • トゥーン
    • Mrs. GREEN APPLE
    • デビュー10周年
    • グリーティング
    • Mrs.
    • APPLE
    • ミニー
  7. 7

    有村麻央

    • 情報解禁
    • 学マス
    • 麻央さん
    • 莉波
  8. 8

    スポーツ

    フォーデン

    • ハーランド
    • シェルキ
    • マルムシュ
    • サヴィーニョ
    • ロドリ
  9. 9

    アニメ・ゲーム

    隠れミッキー

    • JCBカード
    • ディズニーJCBカード
    • ディズニー
  10. 10

    アニメ・ゲーム

    丸井今井

    • プリティストア
    • プリキュア
20位まで見る

人気ポスト

よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ