自動更新

並べ替え:新着順

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 ja.wikipedia.org/wiki/%E5%85%89… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#素粒子と原子核の参考書> 「高エネルギー物理学実験」 (丸善出版1997真木) 前書きより引用: 『今日では #高エネルギー物理学#研究対象 は ・#クォーク や ・#ゲージ粒子 であるが, #実験 で直接 #捕捉#測定 するのは ・#ハドロン#レプトン#光子 といった #粒子 である。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#テラヘルツ の「振動」ですが それは「#フォノン」によるもので フォノンってなんだ?って言うと #音波 だそうです 魂は #光子(#フォトン)で フォノンとフォトンは相互作用するので 低次元起因の魂へのイタズラに 高次元高波動(高周波数)のテラヘルツの音波の振動は 確かに魔除けになりそうです😊

ぐるっぱマン🌈@guruppaman

メニューを開く

#量子論の参考書> 「量子場の理論」(2008江澤) 序文より 『最近の #場の量子論 の入門書は #量子電磁気学 の説明を省いているのも 多々見受けられるが, 場の量子論の最大の成功例である 量子電磁気学の理解は重要と考えた. ここで導いた #光子 の伝搬関数は 金属中の光子に応用でき…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#量子論の参考書> 「量子場の理論」(2008江澤) 序文より 『最近の #場の量子論 の入門書は #量子電磁気学 の説明を省いているのも 多々見受けられるが, 場の量子論の最大の成功例である 量子電磁気学の理解は重要と考えた. ここで導いた #光子 の伝搬関数は 金属中の光子に応用でき…』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#今週のワンピ L リング LL編で #フォクシー 初登場!! #1115話 で再登場!! ノロノロビーム=ノロマ光子 #光子 とは ″光の粒子″ のこと 光子の理論化はアインシュタイン 光=ピカピカ=黄猿ぅ L リング LL と ノロマ光子 リングと光 → 指輪と光月? #JOYBOY , #JuneBride どちらも略すと″JB″ pic.twitter.com/z3u1IJQgFm

癖girl.@kusegirl44

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 ja.wikipedia.org/wiki/%E5%85%89… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#宇宙科学・物理学の定数#プランク定数 h 6.62607015 × 10^(−34) [ J s ] #光子 の持つエネルギー ε は #振動数 ν に比例し, その比例定数がプランク定数。 ε=hν ※プランクの #光量子仮説 プランク定数 Planck constant ja.wikipedia.org/wiki/%E3%83%97… #作用 の次元を持つ。

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」(培風館1989九後) p36より引用: 『#光子#重力子(graviton)は (もちろん #ゲージ場 として 記述されるものだが) それぞれ #ベクトル#テンソル 対称性の #自発的破れ に伴う #NGボソン として 理解できることが知られている。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#量子論の参考書> 「ゲージ場の量子論Ⅱ」(1989九後) p36より引用: 『#現実 において #厳密#零質量#粒子 として #観測 されている #素粒子 は ・#光子(photon)と ・#ニュートリノ(neutrino) しか #存在しない. #近似的 に 「零」#質量 の粒子としては #π中間子#存在 する.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 19 #電磁波(#光子)について, #運動量 が光の #波長 に反比例すること p = h / λ ★ を導いた。 ここからは, 「もし #電子 にも波長 λ があるとすると, この★式は電子にも当てはまるのではないか…?」 と仮定した場合に どうなるかを見てゆく。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 18 ①#特殊相対論 より #光子#相対論的エネルギー E=pc ②#光量子仮説 より E=hν ③: ①②より p=hν/c ④波の基本関係式 c=νλ ⑤: ③④より 光子#運動量 p を #波長 で表示した式 p=h/λ を得る。 #電磁波 の波長が長いと,光子の運動量が小さい。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 16 ① E=pc を導出するには #特殊相対論 が必要。 ② E=hν を導出するには #光量子仮説 が必要。 #光子・歴史的発展 mtlnk.net/j_s%253A%252F%… この①と②を合体させた式が p = hν / c である。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 15 #プランク が発見し #アインシュタイン が名付けた #光量子仮説 によって… #光子#エネルギー Eは #(#電磁波)の #振動数 ν(ニュー)により E=hν だとわかった。 前ツイのE=pcと合わせると 光子#運動量 pを振動数表示した式 p=hν/c を得る。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 14 # は… ①マクロなスケールでは波(#電磁波) ②ミクロなスケールでは粒子(#光子#光量子) ②の時,光子#質量 m=0 であるにもかかわらず #運動量 p が非ゼロの値をとる。 この時, 光子の持つ #相対論的エネルギー E =√(m^2 c^4+p^2 c^2) =pc

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#量子論の参考書> SGCライブラリ 「ゲージ場の量子論入門」(2006近藤) p2より: 『#古典論 が マクロな理論とすると ミクロな理論である #量子論 から (Coulomb力も)理解できるはず. #量子電磁力学 では #電磁場#量子化 した #量子 である #光子#電荷 間の #クーロン力 を媒介.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#素粒子と原子核の参考書> 「高エネルギー物理学実験」(丸善出版1997真木) p202より引用: 『M_γ = 0 という式は #ラグランジアン に A_μ A^μ の項が 現れない事から言えるので, #光子 のみが #質量 ゼロのままである事が分かる。 この機構が #ヒッグス機構 と 呼ばれるものである。』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

#量子論の参考書> 「場の量子論の拡がり 現代からみた種々相」(2006) p6より引用 『#量子論# の量子論から #始まった にも関わらず, #ハイゼンベルク#シュレディンガー によって作られた #非相対論的量子力学 は, #光子#放出#吸収#記述 する事が #できなかった.』

素粒子物理学たん (素粒子論たん。原子核物理・量子力学の学術たん)@particle_ph_tan

メニューを開く

猫でも描ける建築パース #41 『光』って何だ?deヤンス! | ㈱カステラ 制作部 ポンコツ #pixiv pixiv.net/artworks/11913… #学習まんが #光とは #粒子 #光子 #とにかくよし #漫画が読めるハッシュタグ #絵の描き方

ポンコツ部長@ponkotu_buchou

メニューを開く

#量子論の参考書> 「量子場の理論」(2008江澤) 序文より 『最近の #場の量子論 の入門書は #量子電磁気学 の説明を省いているのも 多々見受けられるが, 場の量子論の最大の成功例である 量子電磁気学の理解は重要と考えた. ここで導いた #光子 の伝搬関数は 金属中の光子に応用でき…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 32 #相対論 より E=√(m^2 c^4+p^2 c^2)① 「#光子 はm=0だから①はE=pcとなり そこから p=h/λ② が言える」 「次はm≠0である #電子 にも ②を同様に当てはめよう」 ②はm=0の前提で導いたのに m≠0の時も②を使うのは変だ! ↑ 初学者のハマりポイント

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 30 ちゃんとやると 下記の順序になる。 #マクスウェル方程式#電磁気学 および #ガリレイ変換 下での破綻 ↓ #特殊相対論 での #テンソル 計算 ↓ #光子#相対論的エネルギー E=cp ↓ #シュレディンガー方程式 導出 ↓ それをもとにした #量子化学

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 20 1次元ポテンシャルU(x)のもとで 速度v(ブイ)で運動する 質量mの #電子 の全エネルギーは E=(1/2)mv^2+U(x) 運動量p=mvより E=p^2 / 2m+U(x) #光子(#光量子)で成立する #運動量#波長 表示の式 p=h/λ がもし電子にも当てはまれば E=h^2 / 2mλ^2+U(x)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

トレンド7:32更新

  1. 1

    エンタメ

    寝起きドッキリ

    • 森本茉莉
    • すーじー
    • 富田鈴花
    • 金村美玖
    • おすし
    • 篠原涼子さん
  2. 2

    ファッション

    メゾン ミハラヤスヒロ

    • パリコレ
    • コンポジット
    • スノーマン
    • ラウール
    • Snow Man
    • オーディション
  3. 3

    エンタメ

    ズムサタ

    • いっとん
    • タクシー
    • BREAKOUT
  4. 4

    ニュース

    シニア層

    • カスハラ
    • 退職した
  5. 5

    スポーツ

    シャビシモンズ

    • オフサイド
    • グリーズマン
    • シモンズ
    • シャビ・シモンズ
    • エンバペ
    • フランス代表
  6. 6

    美園さくら

    • 山下リオ
    • デスホリ
    • 小瀧くん
    • 生田先生
  7. 7

    エンタメ

    矢田亜希子

    • 木村多江
    • 青島くんはいじわる
    • 渡辺翔太
    • Snow Man渡辺翔太
  8. 8

    エンタメ

    DEATH TAKES A holidAy

    • 小瀧望
    • 役者冥利に尽きます
    • 小瀧さん
    • のんちゃん
    • 生きる意味
    • WEST.
  9. 9

    エンタメ

    FNS27時間テレビ

    • やす子
    • 学校かくれんぼ
    • 54分
    • 18時30分
    • 27時間テレビ
    • なべさく
  10. 10

    アニメ・ゲーム

    武部沙織

    • 大洗女子学園
    • 沙織さん
    • カレンダー
    • 素晴らしい一年になりますように
20位まで見る

人気ポスト

よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ