自動更新

並べ替え:新着順

ベストポスト
メニューを開く

#シュレディンガー方程式の導出 44 #シュレディンガー方程式 {-(ℏ^2 / 2m)∆-e^2 / 4πε_0 r}X=EX に ∆=(∂/∂r)^2+(1 / r^2)(∂/∂θ)^2+(1 / r^2 sin^2 θ)(∂/∂φ)^2+(2 / r)(∂/∂r)+(cosθ / r^2 sinθ)(∂/∂θ) を代入すれば #極座標系 ( r,θ,φ ) の #微分方程式 になる!!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 35 ▶#電子 の運動に関する 時間非依存の #シュレディンガー方程式: {-(ℏ^2 / 2m)(d/dx)^2 + U(x) } X(x) = E X(x) ▶#運動量 演算子: p = ±i ℏ (d/dx) ここからは,上記の式を #水素原子 の電子に当てはめ 具体的な #微分方程式 を作ってみましょう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Hamilton形式編 27 Q. #ラグランジュ形式 と比較して #ハミルトン形式 のメリット&デメリット A. デメリット: #オイラー・ラグランジュ方程式 と比べ #ハミルトンの正準方程式 は 変数も方程式も個数が2倍. メリット: #微分方程式 の階数が1階で済み #量子力学 へ移行もしやすい.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Hamilton形式編 25 Q. ①#オイラー・ラグランジュ方程式: L(q,q̇)に対し ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ②#ハミルトンの正準方程式: H(q,p)に対し ṗ=-∂H/∂q q̇= ∂H/∂p ↑ この2つで 「#微分方程式#階数」は異なる? A. ①q(t)に関し2階. ②q(t),p(t)に関しそれぞれ1階.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学の参考書> 岩波講座 現代数学への入門 「解析力学と微分形式」(岩波書店1996) amazon.co.jp/dp/4000106260 前書きより 『"#多様体論" として学ぶと #抽象的 に見える事柄が, "#微分方程式#変数変換 して #解く" ための 重要な #手法 である事を 理解して頂けたら幸いである』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 5 問題: 水平にx軸を取り 両側の壁に水平に固定された弦がある時, 弦をつまんで持ち上げ手を離すと 弦全体はどんな運動をするか? 位置xにおける時刻tの弦の振幅をu(x,t)とし u_xx = (1 / v^2) u_tt なるuの #微分方程式 を導出せよ(下添え字は偏微分)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

やはり #自然言語処理 が鬼門だった。 予定より半年遅れて情報コースを卒業。 次学期からは社会と産業コースに再入学して政治哲学を専門としつつ、未履修の数学科目 #正多面体と素数 #微分方程式 を履修していく。物理も少し… pic.x.com/pprvwvwitw

しょすたこおびち@fredholm_eq

メニューを開く

#解析力学_Hamilton形式編 27 Q. #ラグランジュ形式 と比較して #ハミルトン形式 のメリット&デメリット A. デメリット: #オイラー・ラグランジュ方程式 と比べ #ハミルトンの正準方程式 は 変数も方程式も個数が2倍. メリット: #微分方程式 の階数が1階で済み #量子力学 へ移行もしやすい.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Hamilton形式編 25 Q. ①#オイラー・ラグランジュ方程式: L(q,q̇)に対し ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ②#ハミルトンの正準方程式: H(q,p)に対し ṗ=-∂H/∂q q̇= ∂H/∂p ↑ この2つで 「#微分方程式#階数」は異なる? A. ①q(t)に関し2階. ②q(t),p(t)に関しそれぞれ1階.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Hamilton形式編 4 #ラグランジアン Lを変形して #ハミルトニアン Hを定義した という事は… ・Lと同じく Hの引数も #独立変数 である事 ・Hの満たす #微分方程式 も, 「なにで偏微分するか」の 微分と代入の記法が 曖昧になり混乱しやすい。という事 …に気を付けよう!

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学の参考書> 「コマの幾何学―可積分系講義」(2000) 序章より 『#自転 する #コマ#18世紀 以来 #研究 され #微分方程式##楕円函数 あるいはKowalevskiの例では #超楕円曲線 に関連する #Abel函数 で表せる事が よく知られている. 今日ではその全景に #代数曲線…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Hamilton形式編 4 #ラグランジアン Lを変形して #ハミルトニアン Hを定義した という事は… ・Lと同じく Hの引数も #独立変数 である事 ・Hの満たす #微分方程式 も, 「なにで偏微分するか」の 微分と代入の記法が 曖昧になり混乱しやすい。という事 …に気を付けよう!

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学の参考書> 「コマの幾何学―可積分系講義」 (共立出版2000Audin) 序文より: 『#微分方程式 を解く事を 伝統的な用語では 「#積分 する」という。 #可積分系(#積分可能系)は 19世紀半ばに J. Liouville が 初めて明確な #定義 を与えて以来, さまざまな #変遷 の歴史を経て…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 77 ①#最小作用の原理 δS=0 ②#オイラー・ラグランジュ方程式 ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ①を "解く" のではなく, ①で代入・変形すると ②という #微分方程式 になる. ②を "解く" のではなく, ②で代入・変形すると #ニュートンの運動方程式 になる.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 76 ①#最小作用の原理 δS=0 ②#オイラー・ラグランジュ方程式 ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ↑ いずれも 「#微分方程式 を作るための方程式」 と考えるとよい. つまりその式自体を "解く" というより, 変形・代入して 別の微分方程式を生み出すのが目的.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 44 #シュレディンガー方程式 {-(ℏ^2 / 2m)∆-e^2 / 4πε_0 r}X=EX に ∆=(∂/∂r)^2+(1 / r^2)(∂/∂θ)^2+(1 / r^2 sin^2 θ)(∂/∂φ)^2+(2 / r)(∂/∂r)+(cosθ / r^2 sinθ)(∂/∂θ) を代入すれば #極座標系 ( r,θ,φ ) の #微分方程式 になる!!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#シュレディンガー方程式の導出 35 ▶#電子 の運動に関する 時間非依存の #シュレディンガー方程式: {-(ℏ^2 / 2m)(d/dx)^2 + U(x) } X(x) = E X(x) ▶#運動量 演算子: p = ±i ℏ (d/dx) ここからは,上記の式を #水素原子 の電子に当てはめ 具体的な #微分方程式 を作ってみましょう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Lagrange形式編 62 Q. 物理学で #オイラー・ラグランジュ方程式 とは A. #最小作用の原理 を満たす軌跡を #変分法 で導出した #微分方程式. #ニュートンの運動方程式 を 数学的に洗練された方法で定式化し直し #一般化座標 に拡張したもの. #ラグランジュの運動方程式.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#シュレディンガー方程式の導出 5 問題: 水平にx軸を取り 両側の壁に水平に固定された弦がある時, 弦をつまんで持ち上げ手を離すと 弦全体はどんな運動をするか? 位置xにおける時刻tの弦の振幅をu(x,t)とし u_xx = (1 / v^2) u_tt なるuの #微分方程式 を導出せよ(下添え字は偏微分)

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Lagrange形式編 77 ①#最小作用の原理 δS=0 ②#オイラー・ラグランジュ方程式 ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ①を "解く" のではなく, ①で代入・変形すると ②という #微分方程式 になる. ②を "解く" のではなく, ②で代入・変形すると #ニュートンの運動方程式 になる.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Lagrange形式編 76 ①#最小作用の原理 δS=0 ②#オイラー・ラグランジュ方程式 ∂L/∂q-(d/dt)(∂L/∂q̇)=0 ↑ いずれも 「#微分方程式 を作るための方程式」 と考えるとよい. つまりその式自体を "解く" というより, 変形・代入して 別の微分方程式を生み出すのが目的.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#物理数学の参考書> 「物理・工学のための グリーン関数入門」 (東海大出版2000松浦) 前書きより: 『#非同次#微分方程式 の 解法は面倒であるが #常微分方程式 の場合は #定数変化法 などで比較的 容易に解ける場合が多い。 しかし実際の #応用 では #偏微分方程式 が多く現れ…』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#代数学の参考書> 「群と物理」(丸善1992佐藤) 前書きより引用: 『#物理 では #ニュートンの運動方程式 に始まる #微分方程式 による #解析的 な方法が よく知られているが, #群論 のような #代数的#幾何的 な ものの見方も大切で 現在では #物理数学 の重要な一分野。』

群論たん (※大学の代数学の入門用学術たん・抽象代数学たん)@gunron_tan

メニューを開く

#物理数学の参考書> 「問題-解答形式 物理と特殊関数」 (共立出版2004平松) 前書きより: 「#物理学 で 現象を規定する #方程式 のうち #2階#微分方程式 で, ##特殊関数 で表される 問題を多く取り上げ その性質に関するもの, それを使わなければ 解の得られない問題を…」

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#物理数学の参考書> SGCライブラリ55 「超幾何関数入門」(2007木村) 前書きより引用: 『#標語的 に言えば, #微分方程式#公式#具体的 な形は 覚えている必要はなく, #自然数 N の #分割 が指定されれば, 微分方程式も それらについての様々な公式も 原則的に #復元 できる。』

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 62 Q. 物理学で #オイラー・ラグランジュ方程式 とは A. #最小作用の原理 を満たす軌跡を #変分法 で導出した #微分方程式. #ニュートンの運動方程式 を 数学的に洗練された方法で定式化し直し #一般化座標 に拡張したもの. #ラグランジュの運動方程式.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#解析力学_Lagrange形式編 25 未知関数 q(t,ε)=q_0(t)+ε・h(t) に対する #汎関数 S[q](ε)=∫{t_1→t_2} L( q(t,ε), q̇(t,ε), t ) dt ★ が満たす #微分方程式 は [ dS/dε ]_{ε=0} =0 であり, Sをεで微分する計算が必要. この計算を進めるには, ★の右辺より Lをεで微分する計算が必要.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 24 ① #汎関数 S[q]=∫{t_1→t_2} L(q,q̇,t) dt が #極値(#停留値)をとる. … ③ q(t,ε)=q_0(t)+ε・h(t)の時 [ dS/dε ]_{ε=0} =0 ①は積分形の式だが,問題を言い換え ③の #微分方程式 に変形できた. 次ツイから,③左辺の dS/dεを詳しく計算してみよう.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 19 「#汎関数 S[q]=∫{t_1→t_2} L(q,q̇,t) dt が #極値(#停留値)をとる」★ ↑ ★は,物理学的には #ラグランジアン Lの時間積分という #作用汎関数 が最小値をとること. すなわち #最小作用の原理 に相当する. ★を変形し q(t)が満たす #微分方程式 を作るには?

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 18 3つの引数をとる既知関数 L(q,q̇,t) がある. 未知関数q=q(t)を引数にとる #汎関数 S[q] として S[q]=∫{t_1→t_2} L(q,q̇,t) dt を考える。 S[q] が #極値(#停留値)をとるような 関数q(t)を求めよ. (=そのようなq(t)が満たす #微分方程式 を作る手順を示せ.)

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#解析力学_Lagrange形式編 16 Q. 一般的に,#変分法#オイラー・ラグランジュ方程式 とは A. Euler–Lagrange equation ja.wikipedia.org/wiki/%E3%82%AA…#汎関数 の停留値を与える関数」 を求める #微分方程式. 一般的な汎関数に対し, オイラー・ラグランジュ方程式は 物理学と無関係に成立.

物理たん (大学の物理学の入門用・学術たん。物理学たん)@buturi_tan

メニューを開く

#代数学の参考書> 「群と物理」(丸善1992佐藤) 前書きより引用: 『#物理 では #ニュートンの運動方程式 に始まる #微分方程式 による #解析的 な方法が よく知られているが, #群論 のような #代数的#幾何的 な ものの見方も大切で 現在では #物理数学 の重要な一分野。』

数学たん (大学数学大好き@学術たん)@mathematics_tan

メニューを開く

#シュレディンガー方程式の導出 44 #シュレディンガー方程式 {-(ℏ^2 / 2m)∆-e^2 / 4πε_0 r}X=EX に ∆=(∂/∂r)^2+(1 / r^2)(∂/∂θ)^2+(1 / r^2 sin^2 θ)(∂/∂φ)^2+(2 / r)(∂/∂r)+(cosθ / r^2 sinθ)(∂/∂θ) を代入すれば #極座標系 ( r,θ,φ ) の #微分方程式 になる!!

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Lagrange形式編 25 未知関数 q(t,ε)=q_0(t)+ε・h(t) に対する #汎関数 S[q](ε)=∫{t_1→t_2} L( q(t,ε), q̇(t,ε), t ) dt ★ が満たす #微分方程式 は [ dS/dε ]_{ε=0} =0 であり, Sをεで微分する計算が必要. この計算を進めるには, ★の右辺より Lをεで微分する計算が必要.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#シュレディンガー方程式の導出 42 { -(ℏ^2 / 2m)[ (∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2 ] -e^2 / 4πε_0 r } X = E X ↑ この左辺は ① x,y,zで書かれた #直交座標 と ② r で書かれた #極座標 が混在しているため このままでは #微分方程式 を解けない. ①②どちらに統一するか?

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Lagrange形式編 24 ① #汎関数 S[q]=∫{t_1→t_2} L(q,q̇,t) dt が #極値(#停留値)をとる. … ③ q(t,ε)=q_0(t)+ε・h(t)の時 [ dS/dε ]_{ε=0} =0 ①は積分形の式だが,問題を言い換え ③の #微分方程式 に変形できた. 次ツイから,③左辺の dS/dεを詳しく計算してみよう.

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

メニューを開く

#シュレディンガー方程式の導出 35 ▶#電子 の運動に関する 時間非依存の #シュレディンガー方程式: {-(ℏ^2 / 2m)(d/dx)^2 + U(x) } X(x) = E X(x) ▶#運動量 演算子: p = ±i ℏ (d/dx) ここからは,上記の式を #水素原子 の電子に当てはめ 具体的な #微分方程式 を作ってみましょう。

大学の化学を独学しようたん(大学化学たん。量子化学・化学結合論・量子力学・物理化学の学術たん)@DaigakuBakegaku

メニューを開く

#解析力学_Lagrange形式編 19 「#汎関数 S[q]=∫{t_1→t_2} L(q,q̇,t) dt が #極値(#停留値)をとる」★ ↑ ★は,物理学的には #ラグランジアン Lの時間積分という #作用汎関数 が最小値をとること. すなわち #最小作用の原理 に相当する. ★を変形し q(t)が満たす #微分方程式 を作るには?

宇宙科学たん (宇宙論・天文学・天体物理学・地球惑星科学・宇宙物理学の学術たん)@cosmology_tan

トレンド0:27更新

  1. 1

    スポーツ

    三笘

    • 三笘さん
    • 三笘ゴール
    • ブライトン
    • 三笘のゴール
    • 三笘の
    • ミンテ
    • 三笘薫
    • エヴァートン
    • 三笘くん
    • プレミアリーグ
    • スタメン
  2. 2

    スポーツ

    ハヴァーツ

    • ジンチェンコ
    • マルティネッリ
    • ウーデゴール
  3. 3

    エンタメ

    ほくじゅり

    • ジェンガ
    • 北斗くん
    • 9連休
    • 松村北斗くん
  4. 4

    エンタメ

    ほん怖

    • CM多すぎ
    • 坂口憲二
    • 世にも奇妙な物語
    • ほん怖CM
    • ほん怖2024
    • ほんとにあった
    • ドラマ化
    • おさるのジョージ
    • 怖くない
  5. 5

    シャンティ

    • 宇佐美リト
    • ベンティ
    • キリンちゃん
    • 宇佐美
  6. 6

    オランピアソワレ

    • 続編決定
    • オラソワ
    • オトメイト
    • 内田雄馬
    • おかげです
    • オトメイトパーティー
  7. 7

    エンタメ

    おついれでした

    • ENFP
    • 12時間配信
    • 早く寝るんだよ
  8. 8

    EBiDAN THE LIVE

    • 国立競技場
    • エビライ
    • U-NEXT
    • EBiDAN
  9. 9

    一億特攻

    • 一撃講和
    • 一億特攻への道
    • 一億総特攻
    • NHKスペシャル
    • 地方事務所
    • 生と死
    • Nスペ
    • よくやった
    • 責任回避
  10. 10

    エンタメ

    テレビ大陸音頭

    • 情報7days
    • Nキャス
    • 高校生バンド
    • エレカシ
    • 情報7daysニュースキャスター
    • エレファントカシマシ
    • 安住さん
    • ニュースキャスター
    • 神聖かまってちゃん
20位まで見る
よく使う路線を登録すると遅延情報をお知らせ Yahoo!リアルタイム検索アプリ
Yahoo!リアルタイム検索アプリ